Zu diesem Thema gibt es auch noch einen anderen Ansatz.
Presseveröffentlichung vom 3.8.2010
abgewandelt und mit zusätzlichen Informationen versehen
Eine Arbeitsgruppe um Nick Melosh an der Stanford University, arbeitet genau an diesem Phänomen der Doppelnutzung von thermischer und photoelektrischer Energie.
Allerdings verwenden die Forscher dort einen Gallium-Nitirid Halbleiter, der mit Cäsium beschichtet ist. Bei Themperaturen über 200 Grad werden in dieser Struktur sowohl photoelektrische Effekte zur Ladungstrennung als auch daraus induzierte thermische Effekte benutzt. Der Vorgang wird als PETE-Effekt beschrieben.
Allerdings hat der verwendete Halbleiter GaN den Nachteil, daß er schwer zu kontaktieren ist, starke Strukturverwerfungen aus der epitaxie mitbringt, wenn keine Al-Zwischenlagen eingebracht werden können und er sich bei Themperaturen über 280Grad strukturell verändert oder ganz zersetzt.
Das Bestreben liegt derzeit in der Aufbereitung von stabileren GaAs-Kristallen zur Nutzung des PETE.
Kombinierte solarthermische HT-Anlagen mit einem photoelektrischen PETE-Kollektor und nachfolgender Kühlkette über Generator-Turbinen-Konstruktion könnten stark gesteigerte Wirkungsgrade von über 60% erreichen lassen.
Dabei trägt der PETE-Effekt alleine schon das doppelte von heutigen Silizium basierten kurzwellig ausgerichteten Solarzellen, bei denen der Wirkungsgrad mit zunehmender Themperatur stark abnimmt und damit die Doppelnutzung verbietet.
Cu
St.